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Radiation emission by a set of ultrarelativistic charged 
particles in a scattering medium 

A V Koshelkin 
Moscow Engineering Physics Institute, Moscow, Russia 

Received 1 June 1993 

Abstaet. The bremsstrahlung of a system of classically fast charged particles which do not 
interact with each other but which do undergo multiple elastic scattering by randomly 
positioned atoms o fa  medium is studied. We derived the spectrum ofthe 6remsstrahlung of 
such particles through a systematic kinetic analysis of the radiation process in the medium, It 
is shown that the spectral distribution of the emission energy of the bremsstrahlung depends 
significantly on both the characteristics of Ihe scattering of the particles in the medium.and 
the parameters characIeri3ing the initial set of the particles. 

1. Introduction 

The bremsstrahlung of classically fast charged particles in a scattering medium was first 
studied by Landau and Pomeranchuk [ 1,2]. They derived an expression for the spectral 
energy density of the bremsstrahlung. They pointed out that the bremsstrahlung 
intensity was suppressed at low frequencies by multiple elastic collisions of the irradiat- 
ing particle with the atoms of the medium (the Landau-Pomeranchuk effect). Migdal 
[3] derived a quantitative theory for the bremsstrahlung of such a particle by averaging 
the spectrum of the radiation energy over all possible particle trajectories in an amor- 
phous medium. The method proposed by Migdal for calculating the spectrum of the 
bremsstrahlung of a classically fast particle in a medium was developed further [ 4 7 ]  
during research of the dispersion properties of the scattering medium [4,6], its boundar- 
ies [5], and inelastic processes which occur in the medium [6,7]. 

However, only the radiation of an individual particle was studied in [ 1-71. In many 
cases ([S, 91 for example), the source of the bremsstrahlung by fast particles moving 
through a scattering medium is a set of radiating particles. In addition, there is general 
physics interest in a study of the bremsstrahlung of a system ofcharged particles in a 
medium, since in this case an interference mechanism as well as the collisional mecha- 
nism forms the radiation spectrum. As a result, the frequency distribution of the 
bremsstrahlung and the dependence of the bremsstrahlung intensity on the thickness 
of the medium and on parameters characterizing the scattering of the particles in the 
medium are markedly different from those in the case of an individual irradiating 
particle. 

In the present paper we research the bremsstrahlung of a system of classically fast 
charged particles which do not interact with each other but which do undergo multiple 
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elastic scattering by randomly positioned atoms of the medium. We derived the spec- 
trum of the bremsstrahlung of such particles through a systematic kinetic analysis of 
the radiation process in the medium. It is shown that the spectral distribution of the 
emission energy of the bremsstrahlung depends significantly on both the characteristics 
of the scattering of the particles in the medium and the parameters characterizing the 
initial set of the particles. 

If a set of identical particles is present, the spectrum differs from that in the case of 
the individual radiating particle [ 1-31 in being very non-monotonic and in having at 
least one extremum, which result from interference of the wave emitted by the individual 
particles. In the limit of very low frequencies, the bremsstrahlung of the set of identical 
particles in a medium is formed under conditions corresponding to complete coherence 
of the individual radiators, while in the extreme short-wave part of the spectrum the 
bremsstrahlung intensity is proportional to the number of particles. We analyse in detail 
the radiation by a pulsed beam of identical charged particles and also the bremsstrah- 
lung of a high anisotropic point source of ultrarelativistic radiators. It is shown that in 
this case the bremsstrahlung spectrum has a maximum, and that this maximum is 
unique. The value of the radiation energy at this maximum and also the shape of this 
maximum depend strongly on the characteristics of the scattering medium and also on 
parameters which specify the initial beam of the particles. 

We analyse the radiation emission by the set of non-identical particles. It is shown 
that the differences in electrodynamic characteristics of irradiating particles such as 
mass, value of charge, and energy lead to suppression of the interference mechanism 
forming the bremsstrahlung spectrum. The spectral distribution of the bremsstrahlung 
by an ultrarelativistic electron-positron pair in a scattering medium is analysed in detail. 
We show that in this case the differences of the charges of the irradiating particles leads 
to a decrease in the value of the emission energy in the long-wave region of the radiation 
spectrum. Moreover, under some conditions there is a point of overbending in the 
spectral distribution of the bremsstrahlung of an electron-positron pair in a scattering 
medium. 

2. Statement of the problem. Two-time distribution function in the k-representation 

We consider the system of charged ultrarelativistic (E,,>>m,) classically fast (E,,>>w is 
a radiation frequency) particles which do not interact with each other (E,,, m,, and e, 
are the energy, the mass and the charge of the particle p ; ti = C= 1). These particles 
enter a homogeneous, semi-infinite, amorphous scattering medium. In the initial period 
f =0, particles are located at the points uol, vO2. . . . , rON and have the velocities 
001 , 002 ,  . . . , UON, and u O = [ l  -(m,/E,,)2]1’2, and they are directed under the angle 
lA,,l<<l; p = 1, . . . , N to the el vector (vector of the inward normal to the boundary 
of the medium). Let the characteristic longitudinal size of the beam 
le=max,,,{~(ro,, -rOv)J} be such that lBv;I is small compared to the time T when the 
particles move in the medium. 

The spectral distribution of the energy radiated by these particles is 

j dCZn 1 dt, dt2exp(-iwt, +iwtz) 
dw 4rr2 p,v-I 
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where N is the number of particles, k is the wave vector of the radiation field, dQn is 
an element of the solid angle in the direction n = k / k ,  k = o ,  and j?-,(k, t )  is a matrix 
of the current of the transition between the states i andfin the momentum represen- 
tation. The integration in (1) is over the time spent by the particle in the medium. 

If we ignore the interaction between particles, the function&,(k, t )  is proportional 
to the Fourier component of the one-particle density matrix p” (r,, , r; ; RI, Rz, . . . , Rd), 
which depends on the coordinates of particle ,U and also on the radius vectors 
RI ,  Rz, . . . , R4. The latter specify the positions of the scattering centres in the medium 
(4 is the number of the scatterers). 

To calculate the observed spectral distribution of the radiation energy of the particles 
in the medium, dE,/dm, we must average (1) over all possible trajectories of the 
particles in the scattering medium [3]. To do this we need to find the expectation value 
(over all R I ,  Rz,  . . . , R4) of a bilinear combination of the density matrices 
p’(r,, , v;; R,, . . . , R4) and p‘(rv, r:; RI,  . . . , R4). Multiplying the equations of motion 
for the operators p”(r,,. r;; R I , .  . . , R4) and p’(r., r:; R I ,  . . . , R4) from the right and 
left by the matrices p’(ru, rl; RI,  . . . , R4) and p’’(v,, r;; R I , .  . . , R4), respectively, and 
then summing the result, we find the followiug equations for the operator @, which is 
the product of p’ and p”: 

The Hamiltonian kP acts on the variables v, , the Hamiltonian k”” acts on the variables 
r,, and ry, and we have z = t l  - t2 and t = fz. In the problem of the radiation by a charged 
particle, the quantity r is the timescale of the radiation formation (the coherence time), 
and t is the time at which the radiation is emitted [3]. 

We expand the operator @ in (2) in a complete set of plane waves U,” exp(ipr) ( p  is 
the momentum of the particle, and A is the spin variable [lo]), and we take an average 
over the positions of the scatterers in the medium in the resulting equations. Ignoring 
the ‘mixing’ of the spin components of the wavefunctions caused by scattering centres 
(this simplification is legitimate for ultrarelativistic particles [l I]), we then find the 
following exp‘ession for F(pl ,p2,p3,p4; t ,  t + r ) ,  the coefficients in the expansion of 
the operator 9 (we are omitting the spinor indices): 

a i (F(PI ,PZ. p3 ,p4; I ,  f + f)) - (4, -EPt)(F(p~ , P Z  , ~ 3  , ~ 4 ;  2 ,  f + 7 ) )  

= ~ ( ( ~ , , ( ~ ) F ( P I + ~ , P z , P , , P ~ ;  f, f + r ) )  
r 
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where 
4 

Wz)= C U'k) exp(-ig&) 
.-I 

W(g) is a Fourier component of the interaction potential of the scattering centre which 
is situated at the point R. with the particle p, E,, is the energy of the particle with a 
momentump, and the vectorspl ,p2,p3,p4 are related to the momenta of the particles 
p and v by means of the expressions 

PI2'PP 7 k/2 p3,4=pV f W. 
The angular brackets denote the average over the positions of the scatterers. 

Equations (3) and (4) constitute a system of integrodifferential equations which are 
not closed with respect to the unknown function, which depends on two time variables. 
The latter circumstance makes the calculation of the correlation function on the right- 
hand sides of (3) and (4), and also the derivation function, far more complicated than 
in the case of ordinary one-time problems of kinetic theory 1121. However, by virtue 
of the very formulation of the problem of the emission by a charged particle in a 
medium, the times f and T satisfy the inequality r<<t: the radiation must be emitted 
during the time the particle spends in the medium. To first order in the parameter 
zt-'<<l we can then ignore the dependence of the function (F(pl,p2,p3,p4; t ,  ~ + t ) )  
on thevariable r i n  (4),sincethetimescaleofthevariationin(F(p1,p~,p;,p~; t ,  t+r ) )  
specified by this equation is of the order of t>>r, while the derivatives of the function 
(F(pl,pz,p3,p4; t ,  t +  r ) )  with respect to the variable t are fairly smooth functions of 
t by virtue of the homogeneity of the medium. 

Setting r = O  in (4), we can then successively construct equations [12] for functions 
of the type ( V'k)F(pl f g , p 2 , p 3 , p 4 ;  t ,  t +  7)) which appear on the right-hand side of 
(4). Substituting the solution of the latter equations into (4), with r=O, and using the 
standard rules 1121 for splitting up the correlation functions of the type 

( v'kl) v'kZ)F(pl ,pZ 9 p3, p4; f ,  t +  r ) )  = ( v"kl) v'kZ))<F(Pl, P Z r  p3 2 p4; 1, + 7)) 

which arise in the process, we find an equation for (F(pl ,p2,p;,p4; t ,  t f  r)) .  Proceed- 
ing in the same way, we find an equation for the function (F(pl,p2,p3,p4; t ,  t + r ) )  
from (3) (but in this case with T#O). Expanding the collision integral in the equations 
found for (F(p1 ,p2,p3,p4; t)) and (F(pl,p2,p3,p4; t, t+r ) )  in the small momentum 
transfer g and also in (w/E)<<l-this is a legitimate step in the consideration of 
ultrarelativistic classically fast particles--we find the following equations for the 
functions (F(p1 ,p2,p3.p4; t ) )  and (F(pl  ,p2,p;,p4; t ,  t + r ) )  (adetailed derivation of 
( 5 )  and (6) is given in the appendix): 
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Here Fk(v,,, U,, f, z) is the two-time distribution function in the k-representation, which 
is found from < F ( p 1 , p ~ . p ~ , p 4 ; t , t + ~ ) )  by making the change of variables P , , ~ =  
p,, 7 k/2,p3,4=pv =tk/2. The quantities 

-2 -I  
U,, U,, P, , P&O= h o p o  v o  C al UO(~)I~W,,- 

L1 

are the velocities and momenta of particles p and v,  and qo is the mean square value 
of the multiplescattering angle per unit path length I131 of an elementary positive 
charge eo>O; po and Uo(u) are its momentum at the time entrance into the medium 
and the Fourier component of the interaction potential of this charge with an 
isolated centre, and no is the concentration of the scattering centres in the medium. 
The parameter q,,-qo~: is the mean square of the multiple-scattering angle per unit 
of path length of the particle having the charge e,, and the energy E,,, moreover 
lip= U"(g)pop;'U;'(g). The angular vectors q and ( satisfy the equations 

(7) 
U,, = U&:( 1 - q2/2) + uoq 

U, = voe,( 1 - f / 2 )  + vac 

e,q=O 

e,c=O 

1q1 << 1 

In << 1. 
Here e, is the unit vector along the inward normal to the boundary of the medium. 

Expanding the scalar products ku,, and ku, on the left sides of ( 5 )  and (6)  in the 
small quantities Iql, la, 10kl(6'k is an angular vector associated with the emission angle 
Ok and the wave vector by equations like (7) (with U,-&), we find the following expres- 
sion for the function Fk(q, [, t ,  z) from (5) and (6) :  

Fk(q,c, t ,  T)= d2q" dz$ d2C"GE(q-q", z) s s s  
X G$"[(2KP)-'(q" - q') + ( 2 K V ) - ' ( c -  e) ; K i l ( q "  - 9') 

-Ki'([-c); t ;o lpdV' ,C).  (8) 

Here %(q, 4) is the Fourier component of the particle distribution function at the time 
of entrance into the medium (t=r=O), and G$(r ) ,  Gf"(t, 0) is the Green function of 
(6)  and (7) (see the append=). 

We then find the following result for the expectation value (over the positions of 
the scattering centres) of the bilinear combination of matrix elements of the transition 
current in the expression for the bremsstrahlung energy density in the medium: 

<(nxj?+&, t i ) ) b X  ( j L A k -  f z ) ) * I ) = ( ~ + q r - e k I - ~ x ) F k ( T ,  <, t ,  z) (9) 

where Fk(q, <, t ,  z) is determined by (7) and (8 ) .  

3. The spectral distribution of the bremsstrahlung by a system of classically fast 
charged particles in a scattering medium 

Averaging ds,/dw given by (1) over the positions of the scattering centres in the 
medium we find (taking into account (7)-(9)) the spectral distribution of the emission 
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energy by a system of classically fast charged particles in matter: 

x (&+qC-tlN-ek5) 1 d'q" 1 d2q' 1 d2cGf(q-q", r )  

X Gf"[(?.K,)-'(q" -q') + (2Kv)-'(c-c); K;'(q''- q') 

- K ; ' ( C - ~ ) ;  t ,  o]??k(q', e) exp(-ioz). (10) 

The above expression solves the problem of the calculation of the emission spectrum 
of the investigated system of particles because it determines dE,/dh by the Fourier 
component of the two-time distribution function ??k(q,  c) of irradiating particles at the 
time of entrance into a medium and by the parameters characterizing the interaction 
of the particles with atoms of the medium. 

We assume that the system of classically fast charged particles consists of N identical 
particles which are flying into a scattering medium with E,, = E, = E at f = z = 0. In this 
case we are putting 

f?kx(% O=J(q-Ap.)J(tl-A,,)  expW,,) K,,qo= KVqo-4 dPv = '0, - ro.. 

On integrating over all q,q' ,q";c,c  using (9), (lo), (28) and (29), we obtain the 
following expression for the spectral distribution of the emitted energy: 

2 2 

J r  dt j: d o  I 2aq ,'"=E 0 at cosh(s)A2(s) 
ds exp[ - ( I  + i)sc2,y/2] 

Here 

a= (ioqv0/2)''' X =  (w/qvo)''2 5 =mE-' a,,= AV- A, 

im 
2 

A = -  (d,,,),+aq-' tanh(s) dPv= (d,A +e,(d,,,), 

A o = ( q f ) - ' + T  lam q A (s)(d,& tanh(s) 
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e,=e,=e 

tanh(s) 

In the very long-wavelength range of the spectrum, ~ S q c - ~ ,  we set tanh(s)=l, 
retaining the main terms in the integrand in (1 I) as ~ 5 ~ q - '  << 1, and we then have 

From this last equation it follows that in the range of very low frequencies (a-0) a 
system of ultrarelativistic charged particles radiates under total coherence conditions 
dE,/do - N2. 

In the opposite limiting case of the very high frequency 

a, >>max { q5-4; 14 "I ? [(bp v)2(d, v):qT31-'} 

we find, expanding the hyperbolic functions in small S<< 1 in the integrand of (1 1) and 
retaining in the factor of the exponential and in its exponent the main terms for a, + 00, 

where zo=iwt~bP,~(vo~2/2)"2, and zm,,=g-'52 is the maximal time for the given fre- 
quency range. It follows from (14) that in the high-frequency range the interference 
terms decrease as w increases and dE,/do becomes equal to the energy of the radiation 
of N independent particles. 

In the case when the characteristic longitudinal (in the direction of the particle 
motion) size of the beam is such that min{(d,,),}>>max{w-', z} (but, of course, 
max{(d,,),} -lBc<voT) the terms in the sum on the right-hand side of (1 1) are periodic 
functions of the frequency. The inequality 

is then satisfied for any w. For a sufficiently extended beam of emitting particles the 
interference effects thus turn out to be of little importance and the spectral distribution 
of the emission energy dE,/dw as a function of the frequency o basically repeats the 
behaviour of the function (dE,/dw), in its dependence, which occurs for an individual 
particle [2,3,5]. 
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In the opposite limiting case of small (d,,.): (max(dp,),ccrc2), we have, putting all 
(d,,);=O in (11) and (12), after some simple transformations 

y =qw2((dpv)l  + uotb,,)/4a. (15) 
For different frequency ranges we have the following expression for the radiation 

energy: 

dE, - N2 e2(qo)'/2T 
d o  z 8 -_ 

In another extreme case ~ > > q 5 - ~  we obtain 

2e2qT dE, + N - -  - 
3x5' =(dm lBH 

Here (dElu/dw)BH=2e2qT(3n52)-1 is the Bethe-Haitler emission energy 131. 
Since the second term on the right-hand side of (17) is non-negative at any w, it 

follows from asymptotic expressions in (16) and (17) that the frequency distribution 
of the bremsstrahlung of a system of non-interacting particles always has at least one 
extremum. This result is in contrast to the result for an individual radiator [l-31, in 
which case the bremsstrahlung energy spectrum in the medium is a monotonically 
increasing function of w .  

For further study of the radiation spectrum of a system of the particles in a scattering 
medium we specify the beam geometry. Below we consider in detail the spectral distribu- 
tion of the radiation energy of a single-direction pulsed beam (d,,),=O, ]Ap! =O of 
ultrarelativistic particles. This situation is especially singled out because for 
(d,,),=O, IApl = O  there is in the initial beam neither a spatial distribution of particles 
in the propagation direction of the radiation nor a 'spread' in velocity for the particles. 
Interference effects which occur in this case are thus essentially dynamic, i.e. connected 
with the process of the passage of the particles through the scattering medium. 
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4. The sbectrsl distribution ~f the radiation energy of a singledirection pulsed beam of 
ultrarelativistic particles 

Since the distances between the particles in the initial beam are, as a rule, random 
quantities, to find the observed spectral density of the radiation energy it is necessary 
to average dE,/do over all possible values of the vector ($J1. Putting in ( 1 1 )  and 
(12) all ($,),and lApl equal to zero and averaging the obtained expressions over (d,,v)l 
along the pulsed beam cross-section (which we assume to be approximately a circle of 
diameter D )  we obtain 

4(1 -exp{ -D2[qrw2+qw2/a tanh(s)]/l6}) 
qrw2+qw2/a tanh(s) 

X 

where (dE,/do), is the spectral energy density of the bremsstrahlung of an individual 
particle [3]. 

In the low-frequency range, o<qtd, putting tanh(s)= 1 in the exponent of (18), 
we have 

(19) 
-_ dE,-Ne2(qu)1’ZT+ !&N(N-I) , , z [ I n 5 - E , ( “ “ t ; : ” ) + E , ( ~ ) ]  
dw x xwDz(qw) 

where E.(S) is the exponential integral 1141, ~ ~ = ( q w ) - ” ~  is a characteristic time for 
the formation of radiation in the medium in the low-frequency range w,$4c4. 

In the short-wavelength region of the spectrum, w 3 q5-4, we have, expanding the 
factor of the exponent and its index in (IS) in terms of smalls and restricting ourselves 
to the main terms in q ~ - ~ w - I  <c I ,  

x [E]  e:) - E] (e)]} 
where K.(s) is the modified Bessel function [15], ~,.=q-’(~ is the maximum of the 
characteristic times for the formation of radiation in the w 3 q5-4 frequency range 
considered. 

The results in (19) and (20) show that dE,/do is an increasing function of the 
frequency at ~ S q c - ~ ,  and at w3qt-4 the emission energy dE,/dw decreases with 
increasing w. It follows that the spectral energy density of the bremsstrahlung of a 
pulsed beam in a medium has a maximum, and this maximum is unique. Detailed 
analyses show if q D p > > l ,  then ~ _ , , - q 5 - ~ ,  and the bremil-strahlung energy dE,/dw 
is Qf the same order of magnitude as the background due to the Bethe-Haitier radiation 
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emission (dE,/do)BH=2e2qT/3a<2. For qD5-3s5(qT)-"z<<l the maximum of the 
spectrum is again at the frequency ~ , , . - q 5 - ~ ,  but in this case we have the ratio 
(dE,/do),,: (dE,/do)BHsN ( N  is the number of radiating particles). If, on the other 
hand, the conditions 4D5-3<<5(4T)-'/2<<1 hold, the maximum is a plateau with a 
width equal in order of magnitude to D-'(qT)-''*, and we have 
(dE,/do),,(dE,/do)& Y N. 

5. Radiation emission by a set of non-identical particles in scattering matter. 
Bremsstrahlung by an ultrarelativistic electrowpositron pair 

We note that the Green function GB"(x,y, t,  0 )  (see the appendix) which is in (IO) is 
proportional to Sinh-l{[i(~; - K:)]"%;'}. Here zq= (qw)-"2 is the characteristic time 
of coherence when the Landau-Pomeranchuck effect takes place. As to 
[ K: - K$ 2 (rqt-')z-(q,T-')2<< 1, for any radiation frequency o the contribution of the 
addends with p # v to the spectral distribution (10) is very small compared with the 
emission energy of its own emission energy (dE,/do)o. The calculations give us that 
the ratio of the interference part (dE,/do)interF of the emission energy to the value of 
its own (dE,/dw)o emission energy is no more than 

(dEm/dw)i.inF(dEm/dw)Cl S ( N -  I)rmax(m)T-' << 1 

Here r,,,(w) is the maximum coherence time for the corresponding frequency range. 
In that way non-identity (with respect to the difference of electromagnetic character- 
istics) of irradiating particles leads to suppression of the interference mechanism forming 
the bremsstrahlung spectrum of the considered system of emitting particles. 

However, it should be noted that the inequality 

IKZ-KK:l>(ZI/T)2<<1 

which is true when the system of non-identical particles takes place, is infringed for an 
electron-positron pair. In this case 

qp  = 4. =40 Kcl = -Kpm = - 1. 

If the distance between an electron and a positron at the moment when they are flying 
into a medium ( t = O )  is equal to Id,J -Id1 and their velocities are l) . l=upa.=~oe~, we 
have for the emission energy of the ultrarelativistic electron-positron pair in the scatter- 
ing medium the following expression: 

dEm-2- dE, -_ e&u2 Tdt d r  exp[-(ir5z/2)-(02d:/4A3(r))+iod;l 
dw- (do), nqo ReJ0 do A*(r)Adr) cosh2(aor) 

+aoqi2f-' tanh(a0s) -AZ(s)(qoo2u~t3/l2 +iwdJ2) 
A%)Aa(r) 



Radiation emission by ultrarelativistic charged particle 4199 

Here Az(z) ,  A3(7) ,  ~ ( z )  are given by the expressions 

~z(r)=(qot)-’+aoq~l  tanh(aor) ao= (iqowuO/z)’~’ 

q0wzu~t3 iwd- (wuot)2+4aoq~2t-1 tanb(aor) A 3 ( 7 ) = - + 2 +  -2a&;2A;1(z) tanh(a0z) 
12 2 4Aa(r) 

4(qot)-’+ (wvot)’+ 8a&’t-’ tanh(%z) - 8a3tq;’ tanh(&r) 
4A;(T) 

u(r)= 

At w&qo5-4 when the characteristic time z is about (qOw)-’/’ we obtain 

It follows from the last expression that the interference of the waves irradiated by 
the electron and the positron in the medium leads to the suppression of the inten- 
sity of radiation as compared with the situation of an individual emitting particle 

At 6.1 3 q0CW4, expanding all functions which are under the integral over z in (21) by 
((dE,/do)l- w’”). 

laolz<<l, we obtain 

Thus at large w6q05-4 the interference effects are negligible and the emission energy is 
proportional to the number of irradiating particles. 

It should be noted that at w<q05-4 the spectral distribution (dE,/dw) has down- 
wards convexity as a function of 0. But at w 3 the dE,/do is the function which 
is always convex upwards (at least at dz=O). Therefore, at least in the case of a 
sufficiently small initial longitudinal distance d,, the emission energy of the ultrarelativis- 
tic electron-positron pair (as a function of the radiation frequency) has a point of 
overbending at w -q05-4. 

6. Conclusion 

We have constructed a consistent kinetic theory for the radiation of a system of class- 
ically fast non-interacting charged particles which undergo multiple elastic collisions in 
a scattering medium. We have found the spectral distribution of the radiation energy 
from such particles. The obtained spectrum depends strongly both on the parameters 
of the scattering medium, and on the characteristics of the initial system of the particles. 

We have studied in detail the emission by the beam of identical particles. It is 
shown in this case that the spectral distribution of the emission energy has at least one 
extremum, in contrast to the situation for an individual particle [ 1-31 when the emission 
spectrum is a monotonic function from the emission frequency. If a pulsed beam of 
identical particles is considered, the extremum is then a maximum. Moreover, if the 
width of the initial beam D is such that the conditions qD5-3<<5(qT)-’/2<<l hold, the 
maximum of the bremsstrahlung energy spectrum is a plateau with a width of the order 
of D-’(qT)-’/’. The ratio of (dE,/dw),,. to the background level (the energy of the 
Bethe-Haitler radiation (dE,/dm)BM= 22qT/3nf) is approximately equal to N, the 
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number of radiating particles. As the parameter qD5-’ increases, qD5-3Se(qT)-”z,  
the plateau converts into a ‘strict’ maximum. As before, we have (dE,/do)max 
(dE,/do)&zN. If we have qD05-3>>l, then the quantities (dE,/dm),., and 
(dE,/do)BH become the same in order of magnitude. 

The radiation emission by a system of nonidentical particles has been considered. 
It is shown that the differences in the electrodynamic characteristics or irradiating 
particles lead to the suppression of the interference mechanism forming the emission 
spectrum. We have studied in detail the emission by an ultrarelativistic electron-positron 
pair in a scattering medium. We have shown that the interference of a wave emitted 
by the electron and the positron leads to the suppression of the intensity of the emission 
energy in the long-wave frequency range, while in the short-wave frequency region the 
interference effects are negligible and the value of the emission energy is proportional 
to the number of irradiating particles. We have shown that under some conditions the 
emission spectrum of the electron-positron pair has an overbending point which is 
located in the frequency range of the order of q0c-4. 

Appendiv 

We write equations for the function on the right-hand side of (4) (for the case z=O). 
We use the standard rules [12] for breaking up the correlation functions of the type 
(vr(g)V”(gt)F(pi,p2,p3,p4; t ,  t + z ) )  which arise in the process: 

( VPk) v(gl)F(Pl ,P2,P3 ,p4; f ,  f + z)> 

=no (I%)( U”(-g))*& -dl  V(PI 172, PS , ~ 4 ;  t ,  t + r) ) 
where no is the number of scattering centres per unit volume. 

Solving the equations which result (see [ 1 I], for example), under the initial condition 

( VP(g)F(pt, p2, p3 1 p4; t ,  t +  7)) = (V%))<mh .Pz I P3 9 p4; f, f + r ) )  = 0 
(this condition means that there are no correlations at the time t=r=O), we find the 
functions (V’(g)F(pi +g,pz,p3,p4; t ) ) ,  

( VP(g)F(pi I p2 - E ,  P, , ~ 4 ;  9 )  
( ~ p ( g ) F ( P l  I P2, P3 I P4 - g ;  9). 

( V W F ( P l  , PzrP3 + g ,  P4 ; t )>  

Substituting the latter functions into the right-hand side of (4) with z=O, we find the 
equation for ( F ( p I , p 2 , p 3 , p 4 ;  t ,  0)). Proceeding in a similar way for the correlation 
function which appears on the right-hand side of (3), we find the equations for 
(F(pl , p 2 , p 3 , p 4 ;  f ,  z)). As a result we have 

a 
- (F(PI , p 2 , ~ 3 , ~ 4 ;  f ,  0)) + WP, - En +Em - E,)(F(PI , ~ 2 ~ ~ 3 ,  ~ 4 ;  t ,  0)) 
at 

=-no C I (I0k)l2IS-(E,,+,-E,+~,,-E,,)[~:((F(pt , P ~ , P ~ A ;  t ,  0)) 
d 

- < F ( P I + ~ , P z + ~ , P ~ , P ~ ;  t ,  O ) ) ) + K ~ K , ( ( F ( P I + ~ , P ~ , P ~ - ~ , P ~ ;  t ,  0)) 

- (F(Pl +g,pZ,p3,p4+g; 4 0)) 11 - U E , ,  -E,,-I+ E,,- E,,) 
X [K:((F(Pi-g,P~-grP3,P4; I, o))-(F(Pi ,P2,P3,P4; f, 0))) 



is a two-time distribution function in the k-representation. 
In obtaining (24) and (25) we take account of the fact that the timescales of the 

interaction of a particle with an isolated scattering centre, to, are small in comparison 
with f and T. Therefore, in the zeroth~approximation in tOT-'<<l and in t,t-lc<l we 
have replaced the functions < F ( p l , p z , p 3 , p 4 ;  1+t'; T + T ' ) )  by the functions 
( F ( p l , p 2 , p 3 , p 4 ;  1, 5 ) ) .  In deriving (26) we note that the terms proportional to the 

' correlation functions of the type (Y"(g)F(pl ,pz ,p3 ,p4;  t , O ) )  have been discarded, 
since they are small quantities of the order of Tt-'<< 1 with respect to the other terms 
in the equation. 

Equations (24) and (25) describe the kinetics of the emission of bremsstrahlung 
photons in a scattering medium both in the definitely classical case (E>>@) and in the 
quantum mechanical case, with E b w .  In this w e  the function Fk(pp,p,, t ,  z) also 
depends on the spin variables AI, A, & , &. 

Taking the classical limit E>>@, and expanding the functions 
F L ( ~ I  f g ; p ~ f g ; p 3 f g ; p 4 f g ;  t ,  T )  on the right-hand sides of (24) and (25) in the small 
quantity (g( <<[prl(bp(  is the momentum of the particle as it enters the medium), we 
find the following result in the Fokker-Planck approximation [13]: 
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Here u,,=p,,E;'; uv=pvE;';  q0=2n~po~o; l  Zxd Uo(g)12S(Ep,-Ep-~) is the mean 
square multiple scattering angle per unit path length [13], and the angular vectors q 
and [ are given by (7). 

It is easy to find that the Green functions of (26) and (27) are given by the following 
expressions : 

GY"9-9', 91 -p', t, 0) 
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